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Influence of the free-energy functional form on simulated morphology
of spinodally decomposing blends
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The spinodal decomposition of a binary mixture has been studied within several mesoscopic models. It has
been found that the form of the equilibrium free energy has a crucial effect on the morphological development
in asymmetric blends. We have shown that the principal quantity that determines the topology of the interface
~and type of morphology! is the equilibrium minority phase volume fraction, while the transition from bicon-
tinuous to droplet morphology can be treated as a percolation. The concentration dependence of the square
gradient coefficient attributed for the Flory-Huggins–de Gennes free energy has no significant influences on
the average domain growth, but can be distinguished experimentally from its constant-coefficient alternative by
measuring the maximum wave vector of the scattering intensity as a function of the minority phase volume
fraction for spinodally decomposing asymmetric blends. The concentration dependence of the Onsager coef-
ficient has the weak, systematic effect of slowing down the morphological development. The local shape of the
interface is not affected considerably by the concentration dependence of the square gradient and Onsager
coefficient.

PACS number~s!: 64.75.1g, 64.60.2i
e
-
ti

tu

e
t

th
p

es
ia
o
ge
su
ot

e
ne
all
sy

b
e

e
u-
fre

s
re

n

only

dy-
a-
the

he
tain
he

ned

-

ers
l

in-
I. INTRODUCTION

A homogeneousA/B binary mixture after a rapid chang
of external conditions~quench! can be driven into a thermo
dynamically unstable state that will cause a phase separa
process. By a rapid enhancement of concentration fluc
tions domains rich inA or B components will be formed
shortly after the quench. These domains will grow with tim
changing the length scale of the phase separation from
microscopic molecular scale of the very early times to
macroscopic scale of the final stages of this process, com
rable with the system size. Therefore, time-dependent m
scopic models that cover the most interesting intermed
regime of the growth have become a convenient framew
for modeling these phenomena. Governed by the same
eral principles, time-dependent mesoscopic models were
cessfully used to study the decomposition kinetics in b
simple and complex mixtures@1–3#. However, the final form
of the Cahn-Hilliard-Cook equation, which has to be solv
numerically, is very dependent on the model coarse-grai
free-energy functional and Onsager coefficient specific
chosen for a given system. However, even for the same
tem, the final dynamic equation may take different form
@4–9# depending on the simplifying assumptions made
authors about the free-energy functional and Onsager co
cient. At the same time, these equations should describe
netics of essentially the same systems. The main purpos
this paper is to answer the following question: ‘‘What infl
ence do model assumptions about the coarse-grained
energy and Onsager coefficient have on themorphologyde-
velopment during the simulated phase separation proces

Let us consider a dynamically symmetric binary mixtu
described by the scalar order parameter fieldf(r ), which is
the local volume fraction of componentA at point r . The
PRE 621063-651X/2000/62~5!/6821~10!/$15.00
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order parameterf(r ) should satisfy the local conservatio
law, which can be written as a continuity equation@10#

]f~r ,t !

]t
52¹JA~r !1h~r ,t !, ~1!

where¹JA(r ) is the local flux of theA component, and the
stochastic termh(r ,t) represents the thermal noise@1–3#.
Let us assume that the molecular transport is governed
by the differences in the chemical potential~diffusion!, and
neglect possible order parameter transport by the hydro
namic flow @3,11,12#. Then one can postulate a linear rel
tionship between the local current and the gradient of
local chemical potential differencem(r ) @13,14# as

J~r !52E L~r2r 8!

kBT
¹8m~r 8!dr . ~2!

Here L(r2r 8) is the Onsager coefficient that specifies t
transport properties of the considered system at a cer
time and length scale, and which is nonlocal in general. T
local chemical potential differencem(r ) can be found in a
standard way as a functional derivative of the coarse-grai
free-energy functionalF@f#:

m~r !5
dF@f#

df~r !
. ~3!

Finally, the noise term in Eq.~1! should satisfy the appro
priative fluctuation-dissipation relation@3#. In this way, all
information about specific properties of the system ent
into the dynamic equation~1! via the free-energy functiona
and Onsager coefficient.

The simplest free-energy functional that describes an
homogeneous mixture can be written in the form
6821 ©2000 The American Physical Society
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F@f~r !#5kBTE d3r @ f „f~r !…1K„¹f~r !…2#, ~4!

where f (r ) is the homogeneous~bulk! free energy of the
mixing. The square gradient term in Eq.~4! measures the
free-energy cost of the inhomogeneities~interface!, and the
coefficientK is often regarded as the ‘‘range’’ of the inte
actions@1#. In the case of a symmetric homopolymer mi
ture, the equilibrium free energy can be written in the Flo
Huggins~FH! form @15#

f ~f!5
1

N
$f ln~f!1~12f!ln~12f!%1xf~12f!,

~5!

whereN is the polymerization index andx is the FH inter-
action parameter. This expression was originally derived
describe the system of polymer chains on a lattice, but
also be used in course-grained models. In this case,
Flory-Huggins interaction parameter measures an effect
relative affinity betweenA andB components, averaged ove
some mesoscopic length scale, and can be determined
nomenologically from experiments. The only specific po
mer feature of the FH free energy is its dependence on
polymerization indexN, which simply refers to the fact tha
N monomers form one macromolecule. Therefore,
coarse-grained free energy of mixing for a simple bina
mixture must be given by the same expression,@Eq. ~5!#, but
with N51. On the other hand, near the critical point, t
free-energy can be written in the standard Landau-Ginzb
~LG! form with its homogeneous part:

f „f~r !…52 1
2 r f̃~r !21 1

4 uf̃~r !4. ~6!

Here r and u are positive phenomenological constants@4#,
and f̃5f2fc (fc is the critical value of the order param
eter!. It was speculated@16# that the specific form of the FH
free energy may be responsible for some experimentally
servable nonuniversalities of the polymer blend phase s
ration, while none of those were observed in computer sim
lations with the LG free energy. Since the LG free ener
can be obtained by expanding Eq.~5! in f around the critical
concentration, no significant differences between those
models appear within the critical region. Here we shall sh
that even far from the critical region the LG free energy w
correctly chosen parameters leads to quantitatively the s
phase-separated morphology, i.e., the average domain
and the interface topology, if it is used instead of the F
expression in the computer simulations.

The square-gradient term in Eq.~4! can be derived from
the Landau-type free-energy functional expansion by ide
fying that term with the lowest-order inhomogeneous corr
tion. This formalism implies that an expansion of the inh
mogeneous system free energy above that of the refer
homogeneous system was made@17#, and, therefore, coeffi-
cients of this expansions are constants~evaluated for the ref-
erence uniform system!. A more detailed form ofK can be
surmised from the shape of the equilibrium correlation fu
tion that in the case of the polymer blend~within the random
phase approximation! is @15#
-
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S d2F

df2D
q

[S215
1

Nf0D~q2Rg
2!

1
1

N~12f0!D~q2Rg
2!

22x,

~7!

whereRg is the polymer chain radius of gyration,D(x) is the
Debye function,f0 is the average volume fraction of theA
component, and the incompressibility constraint has b
imposed. Expanding the Debye function in the limit of sm
q as

D~x!5~2/x!~12~12e2x!/x!'12x/3, ~8!

where x5(qRg)2, the following form of K can be found
@18#:

K5
1

36

s2

f0~12f0!
. ~9!

Heres is the statistical Kuhn segment length@15#, such that
Rg5ANs/A6 . The truncation of the infinite Landau-typ
expansion at the lowest order term is justified when the or
parameter gradients are small, which requires a smo
variation of the order parameter through the interface. In
case of polymer mixtures this truncation can be made w
the interface width is larger than the polymer chain radius
gyration (q2Rg

2!1). The higher order corrections for Eq.~4!
can be derived in a systematic way@17,18#.

An alternative way to find the expression forK is to as-
sume that the same form of the structure factor@Eq. ~7!# will
also be valid locally for the inhomogeneous system, if t
average volume fractionf0 in Eq. ~7! is replaced by its local
valuesf(r ). Guided by this assumption one can allow t
coefficient at the gradient term to be dependent on the lo
volume fractions, and writeK as

K~f!5
1

36

s2

f~r !@12f~r !#
. ~10!

Is was argued@7# that this concentration dependence ofK
describes the loss of the conformation entropy related
some specific chain conformations at the interface. The fr
energy functional in the form of Eq.~4!, with the FH bulk
free energy and a nonconstant square gradient coeffic
@Eq. ~10!#, was postulated by de Gennes@13#, and has since
been widely used by other@10,14,5,7# to model the phase
separation phenomena in polymer mixtures. It must b
stressed that no rigorous derivation of the above expres
can be made from the standpoint of the traditional Land
type analysis @17#. The first derivation of the Flory-
Huggins–de Gennes free-energy was made by Tang
Freed @17# within the framework of the density functiona
theory. Despite the considerable clarification of the theor
cal aspects of this problem, it is still not known which fun
tional with a constant or nonconstant square-gradient co
cient better describes behaviors of real systems. In this p
we compare morphological evolutions simulated for bo
free-energy functionals.

The most frequently used expression for the Onsager
efficient for a simple binary mixture reads

L~r2r 8!5Md~r2r 8!, ~11!
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where M is a phenomenological mobility. For a polyme
blend, the form of the Onsager coefficient depends on
scale on which the phase separation is considered. If
minimal length scale detectable in the simulations~mesh
size! is larger than the radius of gyration of a polymer co
then the nonlocal Onsager coefficient@10,14# can be approxi-
mated as

L~r2r 8!5DNf~12f!d~r2r 8!, ~12!

whereD is the self-diffusion constant of a polymer chain.
the last expression, the concentration dependence of the
sager coefficient originates from the zero total current div
gence constraint that must be satisfied for any incompr
ible system@13#. Therefore, the Onsager coefficient for a
simple mixtures that can be considered incompressible m
also be concentration dependent. However, this depend
of L is often disregarded in the computer simulatio
@4,5,19#. We shall show below what influence this simplifi
cation has on the phase separation kinetics.

In Sec. II we discuss the time evolutions of several ch
acteristic measures of the phase separated morphology
have been simulated within six different mesoscopic mod
of the same binary mixture. The influence of the equilibriu
free-energy formf (f), the concentration dependence of t
square gradient coefficient, and the concentration dep
dence of the Onsager coefficient will be investigated. Res
are summarized in Sec. III.

II. RESULTS AND DISCUSSION

A symmetric binary homopolymer mixture (NA5NB5N
and sA5sB5s) has been used as a model system for
further investigations. Since the phase diagram of this sys
is symmetric, only the left part (f0<0.5) has been consid
ered. Dynamic equation~1! has been solved numerically o
the cubic 963 lattice by using the explicit Euler scheme. N
finite size effects have been observed within the time in
vals studied. The following rescaled variables have b
used:

x5
~x2xs!

1/2

s
r , ~13!

t5
D~x2xs!

2

xss
2

t. ~14!

In the above expressions,x is the Flory-Huggins paramete
andxs51/„2Nf0(12f0)… andxcr52/N are the values ofx
at the spinodal and critical points, respectively. In acc
dance to the previous studies@5,6#, all phenomena will be
described in the experimental rescaled variables@16#. The
new rescaled timete and distancere are

te518f0~12f0!t, ~15!

re5A18f0~12f0!x. ~16!

The numerical prefactors in Eqs.~15! and ~16! originate in
the linearized theory of the critical quench@5#. In all figures
the subscripte in te will be omitted.
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In order to make comparison between our simulation a
previous simulations, we took the input parameters that c
respond to the previously studied polybutadienes sys
@20,16,7#. We shall assign different quench conditions to t
temperature changes of the polybutadiene-deuterated p
butadien system by using the experimental dependence@20#

x50.326/T20.00023. ~17!

The critical temperature measured for this system is ab
62 °C (xcr57.4331024). More details about the simulatio
procedure can be found in Ref.@9#.

A. Landau-Ginzburg and Flory-Huggins homogeneous
free-energies

The Flory-Huggins free energy in the rescaled variab
@Eq. ~14!# reads

FFH5 1
2 @f log~f!1~12f!log~12f!#xcr1f~12f!x.

~18!

The Landau-Ginzburg free energy can be obtained from
~18! by expanding it in powers off2fc (fc50.5) and
keeping all terms up to the fourth order:

FLG5 2
3 ~f20.5!4xcr1~xcr2x!~f20.5!2. ~19!

There are several important differences between the FH@Eq.
~18!# and LG @Eq. ~19!# expressions for the free energy~il-
lustrated in Fig. 1!. First, the equilibrium volume fractions o
the componentA in the B component rich phase,f1

eq , is
always lower for the free energy given by Eq.~19!. Conse-
quently, the equilibrium volume fraction of the minorit
phase,f m

eq ~the phase rich in theA component!, determined
by the lever rule from the phase diagram is always higher
the LG expression. Please note that, only for a symme
mixture, f m5 f m(t)5f050.5. For any asymmetric compo
sition (f0Þ0.5) the volume fraction of the minority phas
f m , decreases with time, approaching its equilibrium va
f m

eq . It will be shown below that this feature significantl
modifies the morphology development in asymmetric (f0

FIG. 1. The homogeneous free energies computed atT525°C
by using the Flory-Huggins~FH! expression@Eq. ~18!#, and the
Landau-Ginzburg expressions Eqs.~19! ~LG! and ~20! (LGM).
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Þ0.5) blends. Second, the difference between the minim
@F(f1

eq)# and maximum@F(1/2)# values of the free-energ
density is larger for the LG expression~19!, if compared to
the FH expression. Third, the shapes of the tails atf→0 and
f→1 are essentially different. The unphysical values off
,0 andf.1 are automatically forbidden for the FH free
energy expression, while for the LG one they are forma
allowed. The first two disparities can be corrected if, inste
of expression~19! the modified LG homogeneous free e
ergy (LGM) will be postulated as

FLGM
5@a~x! 2

3 ~f20.5!4xcr1~xcr2x!~f20.5!2#b~x!.
~20!

The two constantsa andb have to be chosen in such a wa
that the equilibrium volume fraction of theA component in
the B phase, f1

eq , and the free-energy differenc
FLGM

(f1
eq)2FLGM

(1/2), are exactly the same as those

the FH free energy at a givenx. The FH, LG, andLGM free
energies, are plotted in Fig. 1 forx58.6431024 (T
525 °C).

The FH, LG, andLGM bulk free energies, combined wit
the square-gradient term in the form of Eq.~9! were substi-
tuted into the dynamic equation~1! together with the con-
stant Onsager coefficient~11!. The sequence of the orde
parameter configurations has been analyzed by compu
the pair correlation function, structure factor, and seve
other morphological measures@9#. The average domain siz
has been determined by locating either the first zero in
pair correlation function,R0, or the maximum of the struc
ture factor,qm . The interface topology has been charact
ized by computing the Euler characteristic@9,21,22#. The
Euler characteristic describes the connectivity of the doma
and is related to the other topological measure, the genug,
as xEuler52(12g). The genus has a simple geometric
meaning: it counts the number of holes in a closed surfa
Also, for a closed surface, the Gauss-Bonnet theorem re
the Euler characteristic to the surface integral from the lo
Gaussian curvatures,KG(r ):

xEuler5
1

2pES
KG~r !dS. ~21!

The Euler characteristic is an additive measure@22#. There-
fore, the interconnected bicontinuous morphology is char
terized by the large and negative Euler characteristic, w
for the droplet-matrix morphology it is large and positiv
@23#. The algorithm used to calculate the Euler characteri
was discussed in Refs.@9# and @21#.

The domain growth simulated for the FH, LG, andLGM
bulk free energies is shown in Figs. 2~a! and 2~b!. There are
minor deviations in the average domain growth regarding
the form of the homogeneous free-energy in both symme
@Fig. 2~a!# and asymmetric@Fig. 2~b!# blends. Also, the Euler
characteristic density in the symmetric cases does not de
much on the form of the homogeneous free energy,@Fig.
3~a!#. However, for asymmetric blends the topology of t
simulated interface depends significantly on the model e
librium free energy. The interface simulated with the u
modified LG free energy,@Eq. ~19!#, is more interconnected
if compared to the interfaces simulated within the other m
m
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els at the same conditions@Figs. 3~a! and 3~b!#. At some
special quench conditionsx59.0231024 and f050.35
@Fig. 3~b!#, the simulated morphologies differ even qualit
tively: the droplet-matrix morphology is observed for the F
or modified LG free-energy expression, but for the unmo
fied LG expression the simulated morphology is bicontin
ous. This discrepancy is directly related to the larger equi
rium minority phase volume dictated by the unmodified L
free-energy form@Eq. ~19!#. At the same time, if the minima
of the LG and FH free energies coincides, then no signific
differences between the Euler characteristic evolutions
observed. The tail shape of the free energy slightly modi
the local volume fraction probability distributions. That
turn affects the way the phase volumes approach their e
librium limits ~Fig. 4!. Due to that fact, the FH and LGM
curves deviate from each other at the beginning times of
simulation.

B. Flory-Huggins–de Gennes and Flory-Huggins Landau-type
inhomogeneous free-energies

The Flory-Huggins–de Gennes~FHD! free energy is con-
structed by combining the equilibrium Flory-Huggins fre
energy@Eq. ~18!#, with the square-gradient term in the form
of Eq. ~10!. Our aim is to detect the influences that the no
constant coefficient at the square-gradient term has on
morphology development during spinodal decomposition
order to do that, we construct a slightly different inhomog
neous free energy, which is referred to here as the Flo
Huggins-Landau-~FHL! type free energy, by combining th
FH expression@Eq. ~18!#, with the square-gradient term i

FIG. 2. The growth of the domains estimated from the fi
zeros,R0, in the pair correlation functions. The following mode
have been compared:~a! and ~b! Models with the homogeneou
Flory-Huggins~FH!, Landau-Ginzburg~LG!, or modified Landau-
Ginzburg (LGM) free-energies, constant square gradient and O
sager coefficients.~c! and~d! Flory-Huggins–de Gennes~FHD! and
Flory-Huggins constant square-gradient coefficient~FHL! models
with nonconstant Onsager coefficients.
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form Eq.~9!. Both functionals have been substituted into t
dynamic equation~1! together with the concentration
dependent Onsager coefficient@Eq. ~12!#.

The domain growth simulated within the FHD and FH
models is shown in Fig. 2 for symmetric@Fig. 2~c!# and
asymmetric@Fig. 2~d!# blends. There are no significant d
viations between them. Also, the Euler characteristic den
evolution,@Fig. 5~a!#, is insensitive to the concentration d
pendence of the square-gradient term. However, the t
evolution of the average mean curvature defined as

^H&5

E H~r !dS

S
, ~22!

where S is the total interface area, depends on the fr
energy form used in the simulations@Fig. 5~b!#. For symmet-
ric blends,^H& fluctuates around zero due to the symme

FIG. 3. The influence of the homogeneous free-energy form
the time evolution of the Euler characteristic density. The differ
values of the equilibrium phase volumes derived from the form
the equilibrium free energy~Fig. 1! significantly modifies topologi-
cal properties of the interface. The symbols correspond to the
sidered models as follows: forf050.5, the FH free energy corre
sponds to a solid line, LG to a dotted line, and LGM to a long-
dashed line. Forf0Þ0.5, FH is represented by triangles, LG b
diamonds and LGM by squares. The quench conditions are~a! f0

50.5 atT525 °C ~lines!, f050.4 atT525 °C ~empty symbols!,
and f050.4 atT540 °C ~filled symbols!; and ~b! f050.35 atT
515 °C ~empty symbols! and f050.35 atT525 °C ~filled sym-
bols!.
ty

e

-

of the phase volume fractions. In the slightly asymmet
blends (f050.4), the average mean curvature changes
sign with time, which reflects a transformation@9# from the
percolated cluster morphology of^H&,0 to the ‘‘intercon-
nected passage’’ structure of^H&.0 ~the mean curvature o
a singleA-type droplet is defined as negative!. Our observa-
tion is that within the FHD model this transformation occu
more rapidly. Also, in the case of the droplet-matrix mo
phology (f050.35,x59.0231024), the absolute value o
the average mean curvature is smaller for the FHD mod

One may assume that the difference in the average m
curvature behaviors originates in some local interfacial pr
erties described by the concentration dependence ofK within
the FHD model, but ignored for the FHL model. However,
will be shown in Sec. II C~Fig. 11!, the local properties of
the interface are insensitive to the form of the dynamic eq
tion. The only factor that affects the average mean curva
evolution is the change of the phase volume with time.
Fig. 6~a! the time dependence of the minority phase volum
f m , simulated within both models is shown forf050.4 and
x58.6431024. When the FHD model predicts a more rap
decrease of the minority phase volume fraction, the topolo
of the interface must be the same as for the FHL model@Fig.
5~a!#. This requires a significant modification of the tot
interface shape, which is quantitatively indicated by the d
ferent values of the average mean curvature.

It has been argued@24,7# that the concentration depen
dence of the square-gradient term reflects some entropic
tributions related to specific configurations of the polym
chains at the interface. In this case, the entropic barrier
sociated with the transport of the polymer chains across
interface must slow down the phase separation proces
dynamic model in which such effects are taken into acco
must result in a slower morphology development. In co
trast, very similar time evolutions of the average domain s
and the Euler characteristic of the phase-separated struc
have been found, regardless of the concentration depend

n
t
f

n-

FIG. 4. The influence of the homogeneous free-energy form
the time evolution of the minority phase volume fraction,f m . The
tail shape of the free-energy~Fig. 1! modifies the way the phas
volumes approach their equilibrium limits. The symbols correspo
to the considered model as follows: FH is represented by triang
LG by diamonds, and LGM by squares. The quench conditions a
f050.4 atT525 °C ~empty symbols! and f050.25 atT525 °C
~filled symbols!.
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of K. Even more, the volume fraction of the minority pha
approaches its equilibrium value faster within the FH
model @Fig. 6~a!#, which can be explained by the larger~on
average! contribution from the square-gradient term in t
concentration-dependent case. Thus we conclude tha
slowing down due to the concentration dependence ofK has
been observed in the simulations. This may also indicate
in order to investigate such a specific polymer feature of
phase separation kinetics the model must operate at m
smaller length scales.

The absolute magnitude of the constant square-grad
coefficient measures the free-energy cost of the interface.
a model with a smallerK a larger amount of the interface ca
be formed. Therefore the resulting morphology developm
is slower. In Fig. 7 the time evolution of several morpholo
cal measures simulated for the FHL models withK5gK0 for
g51(s),0.5(,),1.5(n) „K05 1

36 s2/@f0(12f0)#… and for
the FHD model~squares! are shown. At the same rescale
time unit, the average domain size is smaller for the mo
with the smallerK @Fig. 7~a!#, but the interface is more in
terconnected since the absolute value of the Euler chara
istic is larger @Fig. 7~b!#. The dimensionless quantity tha
characterizes the shape of the bicontinuous interface is
homogeneity indexI H

FIG. 5. The influence of the concentration dependence of
square-gradient coefficient on the time evolution of the Euler ch
acteristic density~a! and the average mean curvature~b!. The data
obtained within the FHD model are represented by squares,
these from the FHL model by circles. The quench conditions are~a!
from bottom to top,f050.5 atT525°, f050.4 atT525 °C, f0

50.4 atT540 °C, andf050.35 atT525 °C; and~b! f050.5 at
T525 °C ~small symbols!, f050.4 at T525 °C ~filled symbols!,
f050.4 atT540 °C ~empty symbols!, andf050.35 atT515 °C
@FHD ~filled triangles! and FHL (L)#.
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I H5F2
S3

2pxEulerV
2G 1/2

. ~23!

This combines the area to volume ration with the Euler ch
acteristic of the hyperbolic surface@25#. The time evolutions
of the homogeneity index are shown in Fig. 7~c!. There are
no systematic deviations of the homogeneity index time e
lutions regarding the change ofK. In contrast, the time de
pendence of the minority phase volume fraction,@Fig. 7~d!#
is drastically affected by theK decrease. For the smalle
square gradient coefficient, the domain volume fractions
already at equilibrium very shortly after the quench. Th
affects crucially the process of the droplet morphology f
mation@26#. The droplets are formed earlier with the small
average size and larger droplet number density if compa
to the standard model~the FHL model!.

Unfortunately, it is still not possible to measure the av
age mean curvature for a real polymer system@27,28# within
the accuracy that is required to make an experimental ju
ment about the proper free-energy form. Nevertheless,
experimental investigation of this problem is possible, sin
a precise measurement of the phase volume fractions
made by analyzing TEM or scanning electron microsco
micrographs@29#. One can simply measure the time interv
that is required to achieve a certain fracture of the mino
phase volume during the spinodal decomposition, and c
pare it with the simulation results. For example, a time int

e
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nd

FIG. 6. The influence of the concentration dependence of
square-gradient coefficient on the time evolution of the minor
phase volume fraction~a!, and the peak position in the scatterin
intensity ~b!. The data from the FHD model are represented
squares, and these from the FHL by circles.
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val more than three times longer is required to achieve
volume fraction of minority phasef m50.345 within the FHL
model if compared to the time predicted for the FHD mod
@Fig. 6~a!#. However, this experimental scheme requires p
cise measurements of the self-diffusion constant and
Flory-Huggins interaction parameter in order to calculate
absolute time from Eq.~14!. However, since both model
predict very similar time dependences of the peak wa
vector position in the scattering intensity,@Fig. 6~b!#, they
can be used as a measure of the rescaled time. The
wave vector as a function of the minority phase volume fr
tion is plotted in Fig. 8 for both models. There are consid
able differences between the simulated dependences
measuring a similar experimental dependence the relev
of the FHD and FHL models for a description of the re
system phase separation can be determined. The only pa
eters needed to compare simulations with experimental
sults are the average blend compositionf0 and the tempera
ture dependence of the Flory-Huggins parameter. B
components of the experimental blend must have similar
lymerization indices and Kuhn segment lengths, a sligh
asymmetric average composition (f050.4), and good con-
trast on scanning electron microscope~SEM! or TEM micro-
graphs.

C. Concentration dependence of the Onsager coefficient

In order to detect the influences that the concentra
dependence of the Onsager coefficient has on the morp
ogy development, the FHD and FHL models have both b
simulated with constant@Eq. ~11!# and concentration depen
dent @Eq. ~12!# Onsager coefficients. The fluctuation

FIG. 7. The influence of the magnitude of the constant squ
gradient coefficient on the morphology of the phase separation.
average domain size~a!, the Euler characteristics density~b!, the
homogeneity indexI H5@2S3/2pxeulerV

2#1/2 ~c!, and the minority
phase volume fraction~d! are plotted for the FHD model~squares!,
and for the FHL models with the standard,@Eq. ~9!# (s) constant
square-gradient coefficients two times smaller (,) and 1.5 times
larger (n).
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dissipation theorem that defines the way the noise term
Eq. ~1! is generated was consequently modified@9,30#. To
generate the noise for concentration dependent Onsage
efficient @Eq. ~12!#, we introduce the additional vector whit
noise jW with the Gaussian components, which satisfies
following relation:

^j i~x,t!j j~x8,t8!&5
f~x!„12f~x!…

f0~12f0!
d i , jd~x2x8!d~t2t8!.

~24!

If we now relate the rescaled noise variablez(x,t)
[e21/2h(r ,t) to j as

z~x,t!5¹jW~x,t!, ~25!

the fluctuation-dissipation theorem~FDT! will be satisfied.
The white noise components are generated from the Ga
ian distribution with the variance@f(x)„12f(x)…#/@f0(1
2f0)# independently at each lattice site. The noise intens
e5A(x2xs).

The simulated domain growth for the symmetric a
asymmetric blends is shown in Figs. 9~a! and 9~b!, respec-
tively. The curves simulated with the constant Onsager co
ficient deviate systematically from those simulated with t
concentration dependent coefficient. In the former case,
domain always has a larger~up to 10% at late times! average
size. This fact can be explained qualitatively if one consid
a discretized version of the dynamic equation. For the sa
order parameter configuration, within one time step of
iteration procedure, the ratio of the one-step local order
rameter change computed with the concentration depen
L to that computed with the constantL is proportional to
f(r )„12f(r )…/@f0(12f0)#. Therefore, within the one
time step, the average magnitude of the order param
change is larger for the model where the constant Onsa
coefficient is used. This results in the faster phase separa
dynamics and the larger average domain size for the cons
Onsager coefficient scheme. However, the influence of
concentration dependence ofL cannot be reduced to

e-
he

FIG. 8. The peak wave-vector position in the scattering inten
as a function of the minority phase volume fraction simulat
within the FHD ~squares! and FHL ~circles! models.
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simple rescaling of the time unit, since it could also sligh
modify the slope of the domain growth@Fig. 9~a!#.

The interface topology, that is characterized by the Eu
characteristic density@Fig. 10~a!#, is affected by the form of
the Onsager coefficient in a similar manner. For the cons
Onsager coefficient, the connectivity of the bicontinuous
terface is smaller if compared to the morphology simula
for the concentration dependent case. The same depend
also holds in the case of the droplet morphology,f0
50.35,x58.64 @inset in Fig. 10~a!#. In this case the Eule
characteristic density is exactly twice the droplet num
density. We have found that for a constant Onsager co
cient a smaller number of droplets with a larger average
is observed in comparison to simulations performed with
concentration dependentL.

The temporal evolution of the minority domain volum
fraction is not very sensitive to the form of the Onsag
coefficient@Fig. 10~b!#. There is a small systematic decrea
of f m in the case of the constant Onsager coefficient. Ho
ever, this effect is much smaller in comparison to the sim
effect of the minority phase volume change when, instead
the constant, the concentration dependent square gradien
efficientK(f) in the free-energy functional is used. The tim
evolution of the average mean curvature depends both on
form of L andK. In the case of the bicontinuous asymmet

FIG. 9. The domain growth estimated from the first zeros,R0, in
the pair correlation functions compared for models with const
and concentration dependent Onsager coefficients. The follow
four models have been considered: the FHL model with the c
stant~triangles! and concentration dependent~circles! Onsager co-
efficients; and the FHD model with the constant (L) and concen-
tration dependent~squares! Onsager coefficients.
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blends, the concentration dependence of both factors sp
up the zero average mean curvature transition, while in
case of droplet-matrix morphology it decreases the abso
value of ^H&.

The local shape of the interface can be studied by c
structing curvature probability distribution functions@9,28#.
In Fig. 11, the local mean curvature probability distributio
are shown for all six models considered in this paper. O
for the unmodified homogeneous Landau-Ginzburg free
ergy @Eq. ~19!# is a considerable change of theP(H) shape
observed. This suggests that neither the concentration de
dence of the Onsager coefficient non the concentration
pendence of the square gradient coefficient significantly
fects local properties of the interface.

III. CONCLUSIONS

The spinodal decomposition of the homopolymer ble
has been simulated within several mesoscopic models.
influence of the three following factors have been investig
eds: the form of the homogeneous part of the free-ene

t
g
-

FIG. 10. The influence of the concentration dependence of
Onsager coefficient on the time evolution of the Euler characteri
density~a!, and the minority phase volume fraction~b!. The sym-
bols have the same meaning as in Fig. 9~the filling of the symbols
has been changed!. The quench conditions shown are~a! f050.5 at
T525 °C ~four upper lines!, f050.4 at T525 °C ~four lower
lines!, and f050.35 at T525 °C ~inset!; and ~b! f050.4 at T
525 °C ~four upper lines! and f050.35 atT525 °C ~four lower
lines!.
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functional, the concentration dependence of the square
dient coefficient, and the concentration dependence of
Onsager coefficient.

In the case of symmetric blends the most important fac
that quantitatively determines the morphology developm
is the square-gradient coefficient in the free-energy fu
tional K. From the dimension analysis one can extract
following time dependence for the characteristic length@3#:
L(t);(s̃t)1/3. For a flat interface, the interface tensions̃ can
be expressed as@1#

s̃5KE S dc

dxD
2

dx, ~26!

where the integration of the concentration profilec(x) is
performed in the direction normal to the interface. In t
computer simulations the asymptotic exponent 1/3 for
average domain growth has never been achieved within
time interval studied. However, a qualitatively similar depe
dence of the growth laws onK has been observed. Due to th
symmetry of the equilibrium phase volume fraction t
growth law is not affected by the form of the equilibriu
free energy; the average mean curvature of the interface
mains zero. From a geometrical consideration, the produc
the average domain size and the interface area density (S/V)
must be a constant. Further, if one assumes that the dyn
scaling hypothesis also holds for the interface shape, then
average Gaussian curvature would scale asKG;L(t)22. The
change of the interface topology described by the Euler c
acteristic density can be found from the Gauss-Bonnet th
rem: xEuler /V;L(t)23. Therefore, more interconnected in
terfaces are observed for models with smaller square grad
coefficients@Fig. 7~b!#. Nevertheless, the concentration d
pendence of the square-gradient coefficient attributed to

FIG. 11. The local mean curvature probability distribution fun
tions calculated for the phase separated morphology after 390
caled time units of the simulated spinodal decomposition for diff
ent models. The symbols corresponds to the considered mod
follows: the nonmodified LG~filled circles!, modified LG (L), and
FH (,) homogeneous free energies with constant Onsager
square-gradient coefficients; the FHD~squares! and FHL (s) free
energies with concentration dependent Onsager coefficients; an
FH homogeneous free energy, and constant Onsager and conc
tion dependent square-gradient coefficients (n). The quench con-
dition is f050.5 atT525 °C.
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Flory-Huggins–de Gennes free-energy functional has no
nificant influence on the average domain growth law a
consequently, on the interface topology@Figs. 2~c!, 2~d!, and
Fig. 5~a!#.

In the case of asymmetric blends (f0Þ0.5) the average
domain growth is also governed by the surface tension, s
larly to the symmetric blends. However, the interface top
ogy in this case is also affected by one additional factor—
temporal evolution of the phase volume fraction. It w
shown @9,26# that a transition from bicontinuous to drople
morphology occurs when the minority phase volume fract
becomes smaller than the percolation threshold valuef th
50.3. Therefore, the form of the equilibrium free energy th
determines the final, equilibrium phase volume fractions
a crucial effect on the morphological development in t
asymmetric blends~Fig. 3!. The concentration dependence
the square-gradient coefficient does not change the equ
rium phase volume fractions, but it modifies the way t
volume fractions approach their equilibrium values@Fig.
6~a!#. For all quench conditions studied here this fact do
not modify the Euler characteristic density evolution. T
average mean curvature is more sensitive to the phase
ume fraction evolution@Fig. 4~b!#. In the case of bicontinu-
ous asymmetric blends (f m

eq.0.3), the transformation of the
percolated cluster morphology into the interconnected p
sage structure~defined at̂ H&50) takes place more rapidly
for a model with the concentration dependent squa
gradient coefficient. In the case of disperse morphology,
concentration dependence ofK results in smaller values o
^H&.

The influence of the square-gradient coefficient mag
tude on the morphology development in asymmetric ble
is more complex. A smaller square-gradient coefficient c
responds to a smaller surface tensions̃ that, similarly to
symmetric cases, modifies the scaling factor in the grow
law: the domains have a smaller average size. Howeve
also changes the temporal evolution of the phase volu
fractions@Fig. 7~d!#. For bicontinuous blends those minorit
volume fractions are larger than the percolation thresho
the interface shapes characterized by the dimensionless
mogeneity indices are remarkably insensitive to the mag
tude ofK @Fig. 7~c!#. Nevertheless, for more asymmetric
shallow quenches, the time for the bicontinuous morpholo
transformation into a droplet-matrix structure depen
strongly on K. The percolation thresholdf th50.3 for the
FHD model has been determined phenomenologically,
analyzing the available data. A similar analysis of the o
tained results suggests that, in general, the value of the
colation threshold is model dependent: for a smallerK a
smaller percolation threshold is observed.

The experimental verification of the model assumptio
about the free-energy form can be made by measuring
maximum wave vector in the scattering intensity as a fu
tion of the minority phase volume fraction during the spi
odal decomposition of the bicontinuous, asymmetric blen
~Fig. 8!. By comparing the experimental results with th
simulation curves a definitive statement about concentra
dependence of the square gradient coefficient and its ma
tude can be made.

The concentration dependence of the Onsager coeffic
has a weak, systematic effect on the morphology deve
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ment: it slows down the phase separation process~Figs. 9
and 10!. Its relative magnitude for the change of the avera
domain size has been found smaller than 10% within
time interval studied. The local shape of the interface ch
acterized by the local curvature probability distributions
not affected considerably by the concentration dependenc
the square gradient and the Onsager coefficient~Fig. 11!.

The results presented above suggest that despite h
nonlinear character of the Cahn-Hilliard-Cook equatio
there are more simple relations between the character
morphological measures such as the Euler characteristic
.

J

s.
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of

ly
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erage mean curvature, phase volume fraction and ave
domain size. A semiempirical model that allows one to
construct the three-dimensional morphology of the pha
separated blend without numerical integration of the Ca
Hilliard-Cook equation is now being developed.
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